Skip to content
MMK TECHNOLOGIES
https://www.mmktech.io
B32, F1, C-COLONY, MUTHU SUNDARI APARTMENTS, WATER TANK SOUTH STREET, PERUMALPURAM
Tirunelveli - 627007
+91 9840922213
Mon-Fri 10:00am-7:30pm
km301252@gmail.com
24 X 7 online support
Home
Predictive Analytics
Back to Basics
Learn EDA
Correlation
Estimates(point & interval)
Least Square Method
Regression – Basics
Regressions
Simple Linear Regression
Using Excel
Using PSPP
Using R
Using Python-scipy.stats
Using statsmodels.api
Using Scikit-learn
Multiple Linear Regression
MLR Problem
Using Excel
Using Real Statistic Package
Using Python
Logistic Regression
LR Problems
Decision Trees
CHAID
Python-DecisionTreeClassifier
Py-DecisionTreeRegressor-1
Py-DecisionTreeRegressor-2
Pre-Processing
Handling of Missing Values
Categorical Encoding
Other Encoders
Ordinal Encoder
Binary Encoder
HashingEncoder
FrequencyEncoding
LeaveOneOut Encoder
ContrastEncoders
PolynomialEncoder
Feature Scaling
Distribution based
Z-score Normalization
Robust Scaling
Quantile Transformation
Range based
Scaling to Shape
Skewness Calculation
Transformations
Parametric Scaling
Vector Normalizations
L1 Normalization – MLR
L1 Normalization + Logistic Regression
L2 Normalization
Other Scaling
Decimal Scaling
Winzorisation Scaling
Feature Selection
Filter Method
1.Variance
2. Correlation based
3 Anova (f Test)
4.Chi-Square
5.Univariate Selection
6.Mutual Information
Embedded Method
1. Decision Tree/RFC
2. Lasso(L1 Regularization)
3. Ridge (L2 Regularization)
4.Exhaustive Search
Wrapper Method
1.Forward Selection
2. Backward Elimination
3.Recursive Elimination
Hybrid Selection
Deep Learning
tanH (Hyperbolic Tangent Activation)
Model Evaluation
LazyRegressor
About
Courses
e-Book
Agile
Agile Methodologies
Banking
Deposits & Loans
Financial Calculations
Credit Risk Management
Mathematics
School Mathematics
Speed Maths
Qualitative Ability
CA Courses
CA-Foundation Course -Paper 3
Contact
Logout
Apply Now
Other Scaling