Descriptive Statistics

Go to excel >> data menu >> data analysis

Calculation of all beta coefficients using matrix in excel

Same problem. We have 161 observations and 14 variables. Price is Dependent and all others (13) are independent variables. Now add new column in front of productid column and fill with 1 as shown below. That all the first column must be filled with 1 (cover 161 rows)

Product_id Sale weight resoloution ppi cpu core cpu freq internal mem ram RearCam Front_Cam battery thickness Price
1 203 10 135 5.2 424 8 1.35 16 3 13 8 2610 7.4 2357
1 880 10 125 4 233 2 1.3 4 1 3.15 0 1700 9.9 1749
1 40 10 110 4.7 312 4 1.2 8 1.5 13 5 2000 7.6 1916
1 99 11 118.5 4 233 2 1.3 4 0.512 3.15 0 1400 11 1315
1 880 11 125 4 233 2 1.3 4 1 3.15 0 1700 9.9 1749
1 947 12 150 5.5 401 4 2.3 16 2 16 8 2500 9.5 2137
1 774 13 134.1 4 233 2 1.2 8 1 2 0 1560 11.7 1238

Polynomial  models can also be considered as multiple linear regression models

Multiple linear regression can be written in the matrix form

                  model betas                        error

Our aim is to minimize sum of squares

Minimize sum of squares

First, we have to which are variables are  independent and which one is dependent variables. In our case Price is dependent variable y and X are other independent variables. As explained earlier add a new column  in front of all independent variable. X matrix must contain 1  in the first column

In excel we have to find our the following

  1. X – Cell range from Product_Id to  thickness AND assign a name as X
  2. Xt Formula used is “=TRANSPOSE(X)” AND assign a name as Xt
  3. XtX Multiplication of X(transpose)*X Formula used : “=MMULT(Xt,X)”
  4. XtXinv Inversion of XtX Formula used: “=MINVERSE(XtX)”
  5. Xty Multiplication of X(transpose)*y Formula used ; “=MMULT(Xt,y)
  6. Beta = “MMULT(XtXinv,Xty)

X

Select the data from A2 to N162 and name the table as X

Y

Select Price column from O2 to O162 and name the table as y

Xt(transposeX)  –>(=Transpose(X))

Select X variables including the first column. For output Fourteen rows and 161 columns are selected before passing the command =TRANSPOSE(X). Values goes up to  from Q to FU. We have not shown the values from AK to FU columns.

Now Select the columns from Q3 to FU16 and name the table as Xt

Multiplication of Xt and X

XtX -> (MMULT(Xt,X)

XtX
161 108765 100056 27438.6 838.8 53944 782 241.956 3944.776 355.004 1670.9 725 457580 1436.4
108765 100485019 89813290 18755415 564890.36 38279394 526900 167099.8 3159490.11 264821.3 1199014 510051.6 311974910 976110.4
100056 89813290 444906000 17422562 527695.23 41394818 528030 165080.8 5939330.72 369264.3 1485328 920361.1 325077695 866635.1
27438.6 18755415 17422562 6056780 162935.41 9083890.8 141128.4 43221.05 714610.268 64073.63 282059.5 123173.6 94923082 238763
838.8 564890.36 527695.23 162935.4 4734.8892 286950.12 4353 1333.818 21962.3488 1976.811 9078.48 3989.86 2662520.6 7200.846
53944 38279394 41394818 9083891 286950.12 20982772 287742 90296.24 1706083.64 144947.7 663059.5 288941.2 162235820 457776.8
782 526900 528030 141128.4 4353 287742 4754 1290.496 22272 2028.44 9593.6 4517.6 2468280 6378.4
241.956 167099.76 165080.84 43221.05 1333.8175 90296.236 1290.496 421.1776 7148.48 631.3869 2881.905 1238.86 749733.8 2029.38
3944.776 3159490.1 5939330.7 714610.3 21962.349 1706083.6 22272 7148.48 229408.164 15192.75 53814.78 28884.8 14119043.6 31481.56

This is  a 14 by 14 matrix

Find inverse of XtX -> (MINVERSE(XtX))

This is also a 14 by matrix

find Xty :->(MMULT(Xt,y))

Result: Beta of features-> (MMULT(XtXinv,Xty))

Compare the Beta found using matrix with beta coefficients found using Multiple LInear Regression in Excel